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Abstract

We present a general algorithm for detecting whether a property holds in a distributed
system, where the property is a member of a class we call the locally stable propertzes. Our
algorithm is based on a decentralized method of constructing a maximal subset of the local
states that are mutually consistent, which in turn is based on a weakened version of vector time
stamps. We demonstrate the utility of our algorithm by using it to derive some specialized
property-detection protocols, including two previously-known protocols that are known to be
efficient.

[CL85] gives a simple algorithm that can be used to determine whether or not the global state

of an asynchronous distributed system satisfies a given stable property. This algorithm is very

general and can be used to detect any stable property of an asynchronous system. However, it is
centralized and for most stable properties of interest, it is inefficient in the number of messages

used.

In this paper, we present an algorithm that can be used to detect stable properties. This

algorithm is general in that it can detect a wide class of stable properties (although not as wide

as [CL85]), yet it is decentralized and can be optimized for different properties. We demonstrate its
utility by using it to derive some specialized property-detection protocols, including two previously-

known protocols that are known to be efficient.

I Definitions

We consider an asynchronous distributed system consisting of a set of n nonfaulty processes P =

{Pi, p2,... . p.}. Between any two processes pi and pi there exist two unidirectional fault-free FIFO

*This work was supported by the Defense Advanced Research Projects Agency (DoD) under NASA Ames grant
number NAG 2-593, Contract N00140-07-C-8904, and by grants from IBM and Siemens. The views, opinions, and
findings contained in this report are those of the authors and should not be construed as an official Department of
Defense position, policy, or decision.
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channels: C,.j from pi to pi and C,,i from p, to pi, and these channels have unbounded delivery

time. Processes communicate only by sending and receiving messages over these channels.

A global state E E ! is a consistent set of process states and channel st-tes, defined more

precisely in Equation 2. below. A property is a predicate expressed over the global state of the

system. A stable property is an invariant: once it becomes true, it continues to be true. The

most common examples of stable properties of distributed systems are deadlock of a subset of the

processes, termination of a distributed computation, and the lack of a token among the processei.

There are. of course, other stable properties of interest. For example, in a token passing system

that can lose but not regenerate tokens, the predicate "there are no more than k tokens in the

system" is a stable property.

Processes execute events, which can be send events, receive events, or local events. We say that

an event is relevant to a property D if the execution of the event can potentially affect 'D. More

precisely, if ' is a boolean formula on the global state of the system, and if event e, of p, changes a

part of the state that is referenced in §, then e, is a relevant event. For example. if 'P = "a subset

of the processes are deadlocked" then the relevant events include those that request a resource

and those that grant a resource, since both of these kinds of events affect whether the system is

deadlocked. Note that these events could be local events, send events, or receive events, depending

on exactly how 'P is defined. Unless stated otherwise, ei is an event of process p,. Each event 6,

results in the local state a of pi, and each local state ai has a corresponding event e, that resulted

in that state.

We will only be interested in detecting a subset of the stable properties, which we call the locally

stable properties. Informally, a property -D is locally stable if no process involved in the property

will change its state relative to 4' once I holds. For example, suppose 1 = "processes pi and p,

are deadlocked." I is locally stable, because once f becomes true, neither pi nor p, can execute

an event that could affect 1; in particular, requesting or granting a resource.

More formally, let 9 be the set of all global states that the system can attain. Let Eo be the

portion of E that is referenced in , let A be a set of processes, and let E]A denote the subset of

E that consists of the states of the processes in A and the channels between processes in A. Since

' is stable, if E satisfies § then all states that are reachable from E also satisfy -6.1 We will call 'P

locally stable if it satisfies the following condition: consider any E E 9 that satisfies 4, and let .4

be the set of processes that execute no relevant events in any state that is reachable from E. Then

I can be determined by only considering the values in EIA. Note that A must be nonempty for

properties that reference the state of the system; if A is empty, then 4 can be determined without

knowledge of the state of any process or channel and must therefore be constant. For this reason.

we will assume in this paper that A is nonempty.

'S' is reachable from E if there is a valid execution that takes E to '.
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The most commonly-studied stable properties-deadlock, termination and no token-are all

locally stable. For example, if E is a deadlock state, then A includes the deadlocked processes. and

so the presence of deadlock can be determined by considering the states of the processes in A. The

property "there are no more than k : k > 0 tokens in the system" in a system where a token can
be lost when passed is not a locally stable property. This is because if E is a state containing k

tokens, then every process can execute a relevant event (namely, it can pass a token), and so .4 is
empty. The condition cannot be detected from the values in E4A, since there are no values in this

set.

Our protocol will be based on a weak version of vector clocks [Mat89]. The usual definition of

a vector clock V(e,) is:

* V(e,)[i] is the number of events that pi has executed through e3, and

e V(e,)[j],j A i is the number of events that p, knew that p. had executed when p, executed

e,•

This definition gives us the following two relations between vector clocks and cuts. where -. is the

happens-before relation defined in [Lam78]. Equation 1 defines the happens-before relation in terms

of vector clocks, and Equation 2 defines when a set of local states comprise a global state:

Vi,j : i A j: V(ei)[i] < V(e,)[i] - e, - e, )

Vi,j : V(ei)[i] V(e,)[i] - (ai, .. . ,a) E 9 i2)

We weaken this definition to weak vector clocks in which the index V(e,)[i] counts only the

number of relevant events that pi has executed through ej. With weak vector clocks, several events

of pi may have the same value of V(ej)[i], but all such states result in the same local state with

respect to 1. Let E(ei) be the events of pi that are equivalent to ej in that they have the same
weak vector clock V(e,). Similarly, let S(E) be the set of (not necessarily consistent) cuts that are

equivalent to E; that is, if E' = { a') .... a}, then E' E S(E) S Vai E E : e' E E(e,).

The following weakened versions of Equations 1 and 2 hold for both vector clocks and weak

vector clocks:

Vij : i # j : V(ei)[ij <_ V(e)[i]-

3e e E E(ei)A e' E E(ej)A e - e (3)

Vi, j : V(ej)[i] -2: V(e,)[i] =_ 3E E 9 : E E $(7a ..... an)) (4)

The difference between vector docks and weak vector docks is illustrated in Figure 1. We

assume that the predicate of interest references z and y, but not u nor any of the channel states.

The upper execution shows normal vector clock values and the lower execution shows the weak
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vector clock values. Note that although the events x := 1 and y := 3 do not form a consistent
cut, their timestamps in (b) satisfy Equation 4 since there does exist a consistent cut in which

(x= l.y =3).

x := 1 u 1 x 2

(1.0) (2.1)(3,1) (41) (5,1) (6.4) (7.4)

(0.1) (0.2) (3,3)(3,4) (4,5) (4.6)

y :=2 y :=3

(a)

X -- U x- 2 -

( ) 1 )(1 (1 ) (2.1)

y:=2 y:=3

(b)

Figure 1: Execution: (a) with vector docks, (b) with weak vector clocks.

2 Protocol

We first assume that a process pa wishes to determine when the global state of the processes

P = {pj, ... ,p.) satisfies a locally stable property 4. In Section 2.1. we will change this protocol
so that any number of processes in P may concurrently assume the role of PO. For simplicity, the
state of the channel Cj,, from pi to pj will be represented by two (unbounded) queues: send [j],

which is the sequence of messages pi has sent to pj and is maintained by pi, and recvj[i], which is
the sequence of messages p, has received from pi and is maintained by p,. Whenever we apply this

algorithm, we will need to show that the length of these queues is in fact bounded by a small value.

Whenever a process p, executes a relevant event ej, pi records in a buffer B, its state relative to
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4' and the vector time stamp V(e,). Thus, having executed e,, the value of B will be (a,, V(e,)).

We will abbreviate these two components of Bi as Bi.a and Bi.V. Then, p0 periodically collects

the values of the buffers in any order. Once Po has received these values, po determines if there

exists a mazimal consistent subcut among {B ... B,,} that satisfies . By consistent subcut. we

mean a set of states whose timestamps satisfy Equation 4; hence, the state of a single process is

trivially a consistent subcut. If Po can find such a subcut that satisfies 4, then 4' must currently

hold. 2

Unfortunately, the number of maximal subcuts of a set of n weak vector clocks is Q( 2 "). For-

tunately, it is not necessary for po to examine all of these subcuts. Suppose the set of buffer values

contains B, and B. that are inconsistent: Bi.V[i] < B,.V[i]. These two states violate Equation 4.

and so cannot be part of the same consistent subcut. However. B, records the fact that p, has

executed a relevant event since Bi was recorded. Since I is locally stable, the event that gener-

ated B, cannot have been involved in establishing 4', and so po need not consider any consistent

subcut containing B,. Given the partial order Bi >- Bjd ef Bi.V[j] > B,.V[j], po need only find the

greatest elements of >-, which can be done in l(n2 ) time. We call this subset the latest subcut. By

Equation 4 the latest subcut is clearly a maximal subcut, and all events not in the latest subcut

have executed relevant events since recording their state and so their values can be ignored.

The soundness of this protocol is straightforward. We now argue that the protocol is complete

as well, that is, if - holds, then our protocol will detect 4. Let E be the first global state in which

(P holds. Since I is locally stable, there is a nonempty set of processes A none of which execute

a relevant event after E; these processes will not change their states relative to 4' or update their

vector clocks after E. If po initiates the protocol after Z (i.e., when I holds), then p0 will collect

the states E41A. From the definition of >-, the state of a process pi in A must be in any latest

subcut constructed by po because pi will execute no relevant event. Hence, po will detect .

2.1 Optimization

In the above protocol, po's role is to collect the states, determine the latest subcut and check if 4'

holds in this subcut. We can decentralize these steps by collecting the states in a token.

Consider a token K that consists of n entries (D, ..., D.) where each entry Di = (Bi.a, B,.V[i] ):

that is, Di will hold the state of pi relevant to 4 and the local component of pi's vector clock when

it generated this state. Assume that there exists a special value _L for Di indicating that the state

has not yet been collected; so, all of the Di in K are initially set to I.

Whenever pi wants to know whether 4 holds, it generates an empty token K, inserts its state

'The initiator could examine all consistent subcuts, but if A' C A and EIA' supports 4, then Ee1A will also
support 4, so we need only examine the maximal subcuts. Of course, 4 may be of the form Vpi : *(p), in which

case only a full consistent cut will satisfy 4.



into Di, and passes the token to any other process. When a process p, receives a token K. it takes

the following steps:

" p_ sets Di to (Bjxr, B,.V[j]).

" p. casts out any values Di that are not part of the latest subcut. Note that by definition. B,

must be part of the latest subcut, so only the earlier values Di need be tested with respect

to Bi. From above, the value B, can be discarded if Bi.V[i] < B,.V[i]. The value B,.V[i] is

stored in Di, so K carries enough information for pj to make this test. If D, is not in the

latest subcut, then p. sets D to I.

* p3 determines whether the values Di satisfy . If so, then the detection is made: otherwise.

p. forwards the token to a process Pk, chosen fairly, with Dk = -. If there is no such process.

then p, can drop the token.

Note that we have no a priori restriction on how many tokens there can be in the system at

any time or on how the token is passed, other than it is passed in a fair manner. These decisions

can be made when the algorithm is applied to a particular problem.

3 Termination Detection

We can now instantiate the general protocol given above to obtain a protocol that detects termiz-

nation in a distributed system. There are many variations of this property. The earliest that we

know of is due to Dijkstra, in [Dij8O]. The following definition is the same as that given in [MisS3].

All processes are either active or idle. Only active processes can send messages. An active

process may become idle at any time; an idle process may become active upon receipt of a message.

The system is terminated when a. processes in the system are idle and there are no messages in

transit.

The events that are relevant to termination are sending a message, receiving a message, becom-

ing idle, and becoming active. Therefore, each process will update its (weak) vector clock upon

executing any of these events. The state of a process relative to termination consists of whether

the process is active or idle and whether there is a message on an incoming channel. Note that

for this problem, we do not need to keep track of the contents of the messages exchanged between

processes; only the number of messages is important. To capture the channel states, we have each

process keep track of how many messages it has sent and received on each adjacent channel. The

combined information of all of the processes will then yield the number of messages in transit on

each channel: if pi has sent more messages to p than pi has received from pi, then there is at least

one message on channel C,,,.

We instantiate the general protocol given in Section 2.1 as follows:
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Each process Pi maintains the following local state variables:

" active,: Boolean = true if and only if pi is active.

" send4[1..nI: Integer array. send,[j] = the number of messages that pi has sent to p3 (initially

0).

" rectk[1..n]: Integer array. recvi[j] = the number of messages that pi has received from p3

(initially 0).

When p, sends a message to p. , send,[j] is incremented. When pi receives a message from p).

rec,[j] is incremented. When pi becomes active or idle, active, is set appropriately.

At some point, an idle process pu will start the detection algorithm by circulating a token as

described in Section 2.1. The termination condition can only be evaluated over a total global state.

so a positive determination can only be made by the process p/ that is the last to add its state to

the token.

Process p1 detects termination if and only if the following three conditions hold:

1. The timestamps in the token form a consistent cut over all processes:

2. A.l processes are idle: Vi : active, = false;

3. There are no messages in transit: Vi,j : send,[j] = recvi[i].

We claim that item 1 is redundant: item 3 implies that the cut is consistent. Suppose by way of

contradiction that when all of the states and timestamps have been collected, item 3 holds but the

timestamps form an inconsistent cut. That the cut is inconsistent implies from Equation 4 that for

some i.j, B,.V[i] < Bj.V[iJ. Bj.V[i] is advanced only when pi receives a message and events local

to p, only affect BJ.V[J]. Therefore, there must have been a chain of messages between pi and p,

between the time that Bi was collected and the time that B i was collected. This implies that there

is some k such that send[k] < rect*[i]. This contradicts the assumption that item 3 holds.

Therefore, p! need only check the last two items. In fact, these checks can be done incrementally.

For example, we can assign a total order to the processes and have the token passed along that

total order. When process p, receives the token, it tests to see if

-'activek A (t : 1 <t < k : (sen4[l] = rec^kJ) A (send*[k] = rectj[1])).

If this condition does not hold, then Pt can drop the token. If the condition holds and k = n,

then termination is detected; otherwise, pk fills in Dk and passes the token to Pk+l.

This yields the protocol given in [Mat87] as the channel counting protocol, which only requires

n messages to detect termination once it holds, and which can be further refined into a protocol

that is space-efficient.



4 Deadlock Detection

We now instantiate the general protocol given in Section 2 to obtain a protocol that detects k-out-
of-m deadlock in a distributed system. This problem was first formulated and solved in [BTS4]. In

this formulation, a process can request k resources from a pool of m resources.

A process is either active or blocked. An active process is one that is not waiting for any other
process. Active processes may issue k-out-of-m requests in the following way. When an active
process pi requires k processes to carry out some request, it sends request messages to each of tho
m processes that can perform this action. Process p, then becomes blocked, and waits until the

action requested is carried out by at least k of the m processes. A process can not send any further

requests while blocked.

Only active processes can carry out a requested action. If a process p, receives a request

while active, it will either become blocked or carry out p,'s requested action within finite tirme.
In the latter case, pj will send a grant message to p,. When p, receives k grant messages. it

becomes active again. It then relinquishes the requests made to the rest of the processes to which

it sent request messages by sending them relinquish messages. We assume that a grant message

identifies its corresponding request message (for example, by using a sequence number) so that if

p, receives more than k grant messages for a given request message, the extra grant messages

can be discarded.

The global state of the system will be represented as follows. Each process pi maintains the

following variables:

9 k,: Integer = the number of grant messages required for pi to become active (initially 0).

a rsendi[1..n]: Integer array. r-send,[j] is the number of request messages that p, has sent to

p, (initially 0).

e rrecv[1..n]: Integer array. r.rec%[j] is the number of request messages that p, has received

from p, (initially 0).

e gsend[1..n]: Integer array. g-sendi[j] is the number of grant messages that p, has sent to

pj (initially 0).

* g-recqi[1..n]: Integer array. g-rect[j] is the number of grant messages that pi has received

from pi (initially 0).

We also define the following two state functions:

e bik,: Integer set. j E blk, if pi has received a request message from pi and pi has not sent a

corresponding grant message (i.e., p, is blocking p.). This is defined as

j E blk,"4f r-rec%(jl > g-sen [j]

8



* wf,: Integer set. j E wf, if pi has sent a request message to p. and p, has not received a

corresponding grant message (i.e.. p, is waiting for p,). This is defined as

i E wf, f r-send,[j] > g-recv4[j]

The system wait-for graph is constructed as follows:

* a waits-for edge is drawn from pi to p. when j E wf, A (i E blkj V (r_senc[j] > rrecv,[Zj)):

e the value P, is defined as k, - jVj : g-send,[i] - grect;[j].

Deadlock is tested by reducing this graph: if an edge points from p, to p, and p) is active, then

the edge can be erased and K,, can be reduced by one; and if a process has K, = 0. then all of its

outgoing edges can be erased. The system is deadlocked if and only if there are edges that cannot

be removed by following these two rules.

The relevant events are requesting a resource, granting a resource, receiving a grant, and re-
ceiving a request. Several actions may be associated with a relevant event; for example, when p,

requests 1 out of 2 resources from p. and p,, the following steps are executed atomically:

1. k, is set to 1;

2. r-send[j] and r-send[k] are incremented;

3. B,.V[i is incremented.

The request messages can then be sent to p, and pr.

As described in Section 2.1, a process can start circulating a token at any time. For deadlock, a

process need only send a token if it is blocked for an excessive time, and a logical place to forward

the token is to one of the processes upon which it is blocked.

This protocol can be optimized further. For example, if we restrict ourselves to RPC deadlock
(1-out-of-1 requests), then ki = 1 and need not be represented in the wait-for graph, and the wait-

for graph is reducible if and only if it does not contain a cycle. Hence, when a process pi receives

a token K it can test for a cycle in the wait-for graph simply by testing to see if its state is still

consistent with Di. Furthermore, if a blocked process delays receiving any request messages while

blocked, then it is easy to show that the vector clocks are not necessary: all states in the token are

consistent at any time. Recall that when p, receives a token from pi where i E blkj, pi adds its

state and forwards the token to the process in wfj if wfj is nonempty and drops the token if wf) is

empty. Suppose by way of contradiction that Di and Di are two entries in the token such that B,

and B, are inconsistent: B,.V[i] < B,.V[i]. Then pi must have sent a request message since its

state was added to the token. Furthermore, B. must have been added to the token after B,, which

9



implies that there is a path in the wait-for graph from pi to p.. But this means that p, cannot

become active until p. sends a grant message to the process in blk,, contradicting that p, sent a

request message since its state was added to the token. Therefore, all states in the token at any

time are consistent.

A similar argument can be made to show that this protocol will detect and-deadlock (rn-out-

of-rn requests), but the argument is more complex. The resulting protocol is the one presented

in [CMHS3].

5 Conclusion

This paper presents a general protocol for detecting a class of stable properties (the locally stable

properties) by constructing consistent subcuts. The protocol collects the consistent subcuts in a

decentralized manner and is message efficient. We have demonstrated its use by refining it to a

known protocol for termination detection, a new protocol for k-out-of-m deadlock detection. and a

known protocol for and-deadlock detection. It is interesting to note that the two known protocols

are. in fact, implicitly constructing consistent subcuts.

The class of locally stable properties was defined in proving the protocol correct. We are

interested in whether the protocol can be extended to detect a wider set of stable properties. We

would also like to better understand the notion of relevant events and weak vector clocks. We have

attempted to refine our protocol to several known protocols, and have found that subtle changes

in the definition. o, relevant events and propagation of vector time stamps can greatly ease the

process of refinement.
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